MATH 161

USE U SUBSTITUTION FOR X 1) $x^4 - 10x^2 + 9 = 0$ factor and take half of 1st exponent $u = x^2$ $u^2 - 10u + 9 = 0$ (u-9)(u-1)=0u = 9, 1 x²= 9 x²=1 $x = \sqrt{9}$ $x = \sqrt{1}$ the solution set is -3,3,-1,1 $x^{2} = 2u^{2} - u - 1 = 0 \quad use \ slide \ and \ divide$ $u^{2} - u - 2 = 0$ $(u-2)(u+1)=0 \quad divide \ both \ by \ 2$ $u = 1, \ -\frac{1}{2} \quad can't \ take \ square \ root \ of \ a \ negative \ number$ $x^{2} = 1 \qquad x^{2} = -\frac{1}{4}$ $x = \pm 1$ $2x^4 - x^2 - 1 = 0$ 2) $u = x^2$ Another 2) $21x^4 - 4x^2 - 1 = 0$ $21u^2 - 4u - 1 = 0$ use slide and divide $u = x^2$ $u = x^{2}$ $u^{2} - 4u - 21 = 0$ (u-7)(u+3)=0 divide both by 21 $u = -\frac{3}{21} = -\frac{1}{7}$ $x^{2} = \frac{1}{3}$ $u = -\frac{3}{21} = -\frac{1}{7}$ can't take square root $x^{2} = \frac{1}{3}$ can't take square number $x = \pm \sqrt{\frac{1}{3}} = \frac{\sqrt{3}}{3}$

3) $x^{6} - 26x^{3} - 27 = 0$ $u=x^{3}$ $u^{2}-26u-27=0$ take half of 1st exponent (u-27)(u+1)=0 set both equal to zero u = -1,27 $x^{3} = -1$ $x^{3} = 27$ the solution set is -1,3

4)
$$(x + 2)^{2} + 9(x + 2) + 14 = 0$$
 u is always the middle term
 $u = x+2$ $u^{2}+9u+14=0$
 $(u+7)(u+2)=0$
 $u = -7,-2$ PUT X BACK IN FOR U
 $x+2 = -7$ and $x + 2 = -2$
the solution set is $-9, -4$

5)
$$(x^2 - 2x)^2 - 27(x^2 - 2x) + 72 = 0$$
 u is always the middle term
Let $u x^2 - 2x$ then the equation in us is $u^2 - 27u + 72 = 0$
 $(u-3)(u-24) = 0$
 $u = 3, 24$
 $x^2 - 2x = 3$ and $x^2 - 2x = 24$
 $x^2 - 2x - 3 - 0$ and $x^2 - 2x - 24 = 0$
 $(x-3)(x+1) = 0$ and $(x-6)(x+4) = 0$
the solution set is $3, -1, 6, -4$

6) $(2x + 4)^2 + 4(2x + 4) + 4 = 0$ u is always the middle term u=2x+4 the given equation with correct substitution is $u^2+4u+4=0$ *if nothing is in front of the middle term just use u (u+2)(u+2)=0 u = -2 2x+4 = -2the solution set is -3

Choose the correct graph below. look at the x-intercepts to find graph

11)
$$\frac{5x(8x^{6}+9)-4(8x^{6}+9)}{(8x^{6}+9)(5x-4)}$$
 Factor out the (8x⁶+9)

- 12) $3x^2 + 4xy + 6x + 8y$ Factor by grouping: take GCF from each highlighted part x(3x+4y)+2(3x+4y) then factor out the (3x+4y)(3x+4y)(x+2)
- 13) $3x^2 + 3xy 7x 7y$ Factor GCF from each highlighted part 3x(x+y) - 7(x+y) then factor out the (x+y) (x+y)(3x-7)
- 14) Watch the section lecture video and answer the question listed below. Note: The counter in the lower right corner of the screen displays the Example number.

As shown in Examples 1-3, what two things have to be true in order to use the zero factor property?

Click here to watch the video.

Select all that apply.

- A. Both sides of the equation must be a polynomial.
- B. One side of the equation must be a polynomial not in factored form.
- C. One side of the equation must be a factored polynomial.
- D. One side of the equation must be zero.
- E. One side of the equation must be one.
- 15) Find real solutions by factoring x³ 36x = 0 *Real solutions means set each* x(x²-36)=0 factor out x first x(x+6)(x-6)=0 factor difference of two squares x = 0, x+6=0, x-6=0 0,-6,6

16)

Find real solutions by factoring $5x^3 = 2x^2$ move everything to the left $5x^3 - 2x^2 = 0$ Factor out x² x² (5x-2)=0 set each part =0

Find real solutions by factoring $x^3 - 13x^2 + 42x = 0$ 17) $x(x^2-13x+42)=0$ factor out x first then trinomial x(x-7)(x-6)=0 set each part =0 *****0,6,7

<mark>x³ + 8x² - 64x - 512</mark> = 0 18) Find real solutions by factoring Factor GCF from each highlighted part $x^{2}(x+8)$ - 64(x+8)=0 $(x^{2}-64)(x+8)=0$ (x+8)(x-8)(x+8)=0do not duplicate answers the solution set is -8,8

19) Find real solutions by factoring	<mark>x³ - 8x²</mark> - <mark>9x + 72</mark> = 0
Factor GCF from each highlighted part	x ² (x-8) - 9(x-8)=0
Factor out the (x-8)	(x ² - 9)(x-8)=0
Factor difference of two squares	(x+3)(x-3)(x-8 <u>)</u> =0
do not duplicate answers	the solution set is -3,3,8

20) Find real solutions by factoring $2x^3 + 16 = x^2 + 32x$ move everything to the left Factor GCF from each highlighted part $2x^3 - x^2 - 32x + 16 = 0$ Factor out the (6x-5) $x^{2}(2x - 1) - 16(2x - 1) = 0$ $(x^{2}-16)(2x-1)=0$ Factor difference of two squares (x+4)(x-4)(2x-1)=0x+4-0 x-4=0 2x-1=0 the solution set -

QUIZ EXAMPLES

1) Zeros are 0 and 2 of multiplicity 2, f(3) = 18

Put into factored form: $y = x(x-2)^2$ plug in 3 for x and 18 for y and solve for a $18 = a(3)(3-2)^2$ 18 = 3a a = 6then write equation with a = 6 $y = 6x(x-2)^2$ Expand the equation: $y = 6x(x^2 - 4x + 4)$ $y = 6x^3 - 24x^2 + 24x$

2) Zeros are -3, -1, 4 f(-2) = -18

Put into factored form: y = (x+3)(x+1)(x-4)plug in -2 for x and -18 for y and solve for a -18 = a(-2+3)(-2+1)(-2-4) $-18 = 6a \quad a = -3$ then write equation with a = 6 y = -3(x+3)(x+1)(x-4)Expand the equation: $y = (-3x - 9)(x^2 - 3x - 4)$ $y = -3x^3 + 9x^2 + 12x - 9x^2 + 27x + 26$ $y = -3x^3 + 39x + 26$

EXTRA PROBLEMS

a)
$$x - 12x\sqrt{x} = 0$$
 move one term to the right
 $(x = 12x\sqrt{x})^2$ square both sides
 $x^2 = 144x^3$ move back to left to factor
 $x^2 - 144x^3 = 0$
 $x^2 (1-144x) = 0$ set each part equal to zero
 $x^2 = 0$ and $1 - 144x = 0$
 $x = 0, \frac{1}{144}$

b)
$$x + \sqrt{x} = 72$$
 $u = \sqrt{x}$ $u^2 + u - 72 = 0$
 $(u - 8)(u + 9) = 0$ $u = -9, 8$
 $\sqrt{x} = -9$ $\sqrt{x} = 8$
no solution $x = 64$

c)
$$4x^{\frac{1}{2}} - 9x^{\frac{1}{4}} + 3 = 0$$
 $u = x^{\frac{1}{4}}$ $4u^2 - 9u + 3 = 0$ Use quadratic
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 $\frac{9 \pm \sqrt{81 - 4 \cdot 4 \cdot 3}}{8}$ $u = \frac{9 \pm \sqrt{33}}{8}$

The opposite of ¼ root is raised to the 4th power, put answer in exactly like this

$$x = \left(\frac{9+\sqrt{33}^4}{8}\right), \left(\frac{9-\sqrt{33}^4}{8}\right)$$

d) ($\sqrt[4]{7x^2 - 6} = x$)⁴ raise both sides to the 4th power

 $7x^{2}-6 = x^{4} \text{ move everything to the right side0}$ $x^{4}-7x^{2}-6=0 \text{ FACTOR, half of } 1^{\text{st}} \text{ exponent}$ $(x^{2}-6)(x^{2}-1)=0 \text{ set both sides equal to zero}$ $x^{2}-6=0 \text{ and } x^{2}-1=0 \text{ take square root of both}$ $x = \sqrt{6}, 1 \quad *if x = \sqrt{8} \text{ must reduce radical} \sqrt{2 \cdot 4} \quad \Rightarrow \quad x = 2\sqrt{2}$

e)
$$x^{2} + 8x + 3\sqrt{x^{2} + 8x} = 18$$
 $u = \sqrt{x^{2} + 8x}$ $u^{2} + 3u - 18 = 0$
 $(u - 3)(u + 6) = 0$ $u = -6,3$
 $\sqrt{x^{2} + 8x} = -6$ $\sqrt{x^{2} + 8x} = 3$
can't have negative $x^{2} + 8x = 9$ move 9 to left to factor
 $x^{2} + 8x - 9 = 0$ FACTOR
 $(x+9)(x-1)=0$ set both sides equal to zero
 $x = -9,1$

f)
$$x^{-2} - 6x^{-1} + 8 = 0$$
 $u = x^{-1}$ $u^2 - 6u + 8 = 0$
 $(u-2)(u-4) = 0$ $u = 2,4$
 $x^{-1} = 2$ $x^{-1} = 4$ negative exponent makes answer a fraction
 $x = \frac{1}{2}, \frac{1}{4}$

g)
$$5x^{2/3} - 34x^{1/3} - 7 = 0$$
 $u = x^{1/3}$ $5u^2 - 34u - 7 = 0$ USE SLIDE AND DIVIDE
 $u^2 - 34u - 35 = 0$
 $(u - 35)(u + 1) = 0$ divide by 5
 $u = 7, -1/5$
 $x^{1/3} = 7$ $x^{1/3} = -1/5$
opposite of 1/3 exponent is cube so cube both answers

$$x = 343, -\frac{1}{125}$$

h) $\left(\frac{v}{v+1}\right)^2 + \frac{3v}{v+1} = 18$ $u = \frac{v}{v+1}$ the 3 is the coefficient in front of u $u^2 + 3u - 18 = 0$ (u+6)(u-3) = 0 u = -6,3 $\frac{v}{v+1} = -6$ $\frac{v}{v+1} = 3$ -6v - 6 = v 3v + 3 = v -6 = -7v 3 = -2v $x = -\frac{6}{7}$ and $-\frac{3}{2}$

j) Find real solutions by factoring x ³ -	<mark>- 2x²</mark> + <mark>49x - 98</mark> = 0	
Factor GCF from each highlighted part	x ² (x-2)+49(x-2)=0	
	(x ² +49)(x-2)=0	
	$x^{2}+49=0$ and	x-2 = 0
square can never = 0	x^2 = -49 no solution	x = 2

k) Find real solutions by factoring $6x^3 + 36x = 5x^2 + 30$ move everything to the left Factor GCF from each highlighted part $6x^3 - 5x^2 - 86x - 80 = 0$ Factor out the (6x-5) $x^2(6x - 5) - 6(6x - 5) = 0$ $(x^2 - 6)(6x - 5) = 0$ $x^2 - 6 = 0$ and 6x - 5 = 0 $x = -\sqrt{6}, \sqrt{6}, \frac{5}{6}$